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ABSTRACT:  In this paper we study the Couette flows of a second grade fluid, between two parallel plates, 

produced by the motion of a plate that applies a tangential stress on the fluid. Exact solutions for velocity 

are determined by means of the Laplace transform. Two particular cases corresponding to constant and 

sinusoidal tangential stresses on the plate, are studied. Expressions for the velocity field corresponding to 

the motion of a Newtonian fluid as limiting cases are extracted from general solutions. Some relevant 

properties of the velocity and the influences of the pertinent parameters on the fluid motion are presented 

using graphical illustrations.  
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1. INTRODUCTION 
Due to the nonlinear nature of Navier-Stocks equations, it is 

very complicated to find the exact solutions except a few 

particular cases available in literature. For the equations of 

motion, the exact solutions have some physical meaning and 

these solutions can be used as a check against complicated 

numerical codes that have been developed for much more 

complex flows. Taylor [1] investigated that the non-linear 

convective term vanished and found an exact solution by 

representing doubly infinite array of vertices by taking 

vorticity to be proportional to the stream functions perturbed 

by a uniform stream. later, Kovasnay [2] found an exact 

solution which represents the motion behind a two 

dimensional grid and showed that the non-linarites in the 

Navier-Stokes equations are self-canceling. Wang (1996) 

was also able to linearize the non-linear part of Navier-

Stocks equations and showed the results of Taylor [1] and 

Kovasznay (1948) as special case in his work. Similar 

results were obtained by Lin and Tobak [3] and Hui [4] in 

which the non-linear inertial part canceled automatically. 

 The non-linearity in non-Newtonian fluids, namely fluids 

of second grade, has caused much difficulty in solving these 

problems. Rajagopal [5] investigated that, in the equations 

of motion of a second grade fluids, the nonlinear convective 

term vanish for the specific problems and Rajagopal [6] 

obtained solutions for unsteady flows. Rajagopal and Gupta 

[7] also found a class of exact solutions to the equations of 

motion of second grade fluids in which the non-linearities 

are self-canceling and showed a subclass of the solutions 

obtained by Wang [8] for the Navier-Stokes equations and 

Rajagopal [9] in (1995) study the boundary conditions for 

the differential type fluids . 

 The motion of a fluid can be obtained as a result of several 

effects such as various types of motion of the boundaries, 

application of a body force, wall that applies a tangential 

stress on the fluid or application of a pressure gradient. 

Exact solutions have been established, by Rajagopal [10] for 

unsteady unidirectional flows, Rajagopal and Gupta [11-12] 

and Rajagopal [13] for the flow between infinite parallel 

plates. The effects of side walls on steady and unsteady 

flows have been studied in [14-16]. The unsteady Couette 

flow problem has been considered in several works 

containing various effects. The effects of fluid slippage at 

the boundary for Couette flow are considered in the paper of 

Marques et al. [17] under steady state conditions and only 

for gases. Khaled and Vafai [18] have studied the effect of 

slip condition on Couette flows due to an oscillating wall. 

Other interesting results regarding flows of Newtonian or 

non-Newtonian fluids can be found in the references [19-

24]. 

This paper deals with the Couette flows of a second grade 

fluid caused by the bottom plate which applies a tangential 

stress 
0( ) = ( )W t f t   on the fluid. Exact expressions for 

velocity are determined by means of a Laplace transform. 

Two particular cases, namely constant tension on the bottom 

plate and sinusoidal oscillations of the wall tension, are 

studied. Some relevant properties of the velocity are 

presented using graphical illustrations generated by the 

software Mathcad.  
 

2. BASIC EQUATIONS 
The Cauchy stress T for an incompressible fluid of second 

grade, is related to the fluid motion by the constitutive 

equation [25-27]  

       
2

1 1 2 2 1= , = ,p      T I S S A A A  (1) 

 where p  is the hydrostatic pressure, I  is the unit tensor, S 

is the extra-stress tensor, 
1

=
T

A L L  is the first Rivlin-

Ericksen tensor, L  is the velocity gradient, the superscript T 

indicates the transpose operation, 
2

A  is the kinematic tensor 

defined by 
2 1 1 1

=
T

d dt  A A A L L A , /d dt  denotes the 

material time derivative,   is the dynamic viscosity of the 

fluid and 1 , 2  are the normal stress moduli that meet the 

following restrictions  

1 1 2> 0, 0, = 0,      (2) 

The unidirectional flows to be considered here have the 

velocity field [25]  

= ( , ) = ( , ) ,y t u y tV V i  (3) 
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here i  is the unit vector along the x-direction of the 

cartesian co-ordinate system ,x yand z . For such flows the 

constraint of incompressibility is automatically satisfied. In 

the case of a conservative body force field and in the 

absence of a pressure gradient in the x direction the 

governing equation corresponding to Eqs. (1) and (3), as it 

was deduced in [25] from the balance of linear momentum, 

is  

1

( , )
( , ) = ,

u y t
y t

t y
  

  
 

  
 (4)

2

2

( , ) ( , )
= , ( , ) (0, ) (0, ),

u y t u y t
y t h

t t y
 

   
    

   
 (5) 

 where ( , )y t  is the tangential shear stress, 
1= /   , 

= /    is the kinematic viscosity and   being the 

constant density of the fluid.  

 

3. PROBLEM FORMULATION AND SOLUTION 
  Let us consider an incompressible second grade 

fluid between two infinite rigid plates which are at rest 

initially. The plates are situated in the planes = 0y  and 

=y h  of a Cartesian coordinate system Oxyz  with the 

positive y-axis in the upward direction, Fig. 1. After = 0t  

the fluid is set in motion by the lowwer plate that applies a 

tangential stress =0 0( ) = ( , ) | = ( )W yt y t f t    to the 

fluid. Here, ( )f   is a piecewise continuous function 

defined on [0, ) and (0) = 0f . Also, we suppose that the 

Laplace transform of function ( )f   exists. 

 

 
Figure 1: Geometry of the problem 

 

Owing to the shear the fluid between the plates is gradually 

moved. Its velocity is of the form (3) and the governing 

equation are (4) and (5). The associate boundary and initial 

conditions are  

 

=0 1 =0 0

( , )
( , ) | = | = ( ), ( , ) = 0, 0,y y

u y t
y t f t u h t t

t y
   

  
  

  
 (6) 

( ,0) = 0, [0, ].u y y h  (7) 

 By using the following dimensionless variables and 

functions  

2

0

2

0

= , = , = ,

= , ( ) = ,

t y
t y

h h

u h t
u g t f

h

 








  


   

 
   
 
 

 (8) 

 we obtain the nondimensionalized initial-boundary value 

problem (dropping the `` "  notation)  

( , )
( , ) = 1 ,

u y t
y t

t y
 

  
 

  
 (9) 

  
2

2

( , ) ( , )
= 1 , , > 0

u y t u y t
y t

t t y


   
 

   
 (10) 

   
=0 =0

( , )
( , ) | = 1 | = ( ),

(1, ) = 0, 0

y y

u y t
y t g t

t y

u t t

 
  

 
  



 (11) 

  

( ,0) = 0, [0,1].u y y  (12) 

 Here 
2= h   

 By applying the temporal Laplace transform [28] to Eqs. 

(10) and (11) and employing the initial condition (12) we 

obtain the problem  
2

2

( , )
( , ) = 0,

1

u y q q
u y q

y q




 
 (13) 

  

 
(0, )

1 = ( ), (1, ) = 0,
u q

q G q u q
y







 (14) 

where the image function 

0
( , ) = { ( , )} = ( , )qtu y q u y t e u y t dt




L  is the Laplace 

transforms of functions u(y,t). 

 Solving ordinary differential equation (13) with respect to 

boundary conditions (14) we get  

1( , ) = ( ) ( , ),u y q G q G y q  (15) 

where  

1

[( 1) ]
1

( , ) = .

(1 ) ( )
1 1

q
sh y

q
G y q

q q
q ch

q q




 





 

 (16) 

The singular points of the function 1( , )G y q  are simple 

poles located at  
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2

2

(2 1)
= , = , = 0,1,2,...

1 2

k
k k

k

k
q k

 








 (17) 

 Inverting Eq (16), by using the residue theorem to evaluate 

the Laplace inversion integral [28], we obtain  

 

1

1 1 1

=0

( , ) = { ( , )} = ( , ) ;qt

k

k

g y t L G y q Res G y q e q


         

2

2 2
=0

cos( )
= 2 exp .

1 1

k k

k k k

y t 

 

  
  

  
  (18) 

  

4.  CONSTANT TENSION ON THE LOWER PLATE 

In this section we consider ( ) = ( )g t H t , where H(t) is the 

Heaviside step unit function. Using Eqs. (15), (18) and the 

convolution theorem we obtain the exact (y,t)-domain 

solution of the set of equations (10)-(12) given by  

1 1
0

( , ) = ( )( ) = ( ) ( , ) ,
t

u y t g g t g t s g y s ds   (19) 

and, using the identity  

2
=0

cos
2 = ( 1), [0,1],k

k k

y
y y







    (20) 

 we obtain the velocity field  

 

1
0

2

2 2
=0

( , ) = ( ) ( , )

1
( ) ( 1) 2 cos( )exp ,

1

t

k
k

k k k

u y t H t g y s ds

t
H t y y




 





  
    

  





 (21) 

 The velocity given by Eq. (19) has the following temporal 

limits  

0

( , ) = 0 , ( , ) = 1,lim lim
tt

u y t u y t y
 

  (22) 

In the case = 0 , we recover the velocity field  

 

 
=0

2

2

1
( ) ( 1) 2 cos( ) exp( , ) = ,

k

k k

k

N H t y y tu y t  




  
 
 
 



 (23) 

corresponding to Newtonian fluid given in [29, Eq. (21)] 

The same limits can also be obtained using the known 

relations 0 ( , ) = ( , )lim limt qu y t qu y q   and 

0( , ) = ( , )lim limt qu y t qu y q  . 

 As a result from (22), we have that the velocity u(y,t) does 

not exhibit a jump of discontinuity at = 0t  and, for 

t   it reduces to the ``stationary solution'' = 1su y  .   

 
Figure 2: Profile of the velocity field   versus   (Fig.2a) 

and versus   (Fig.2b) corresponding to the Eq. (21) for 

constant tension on the wall 

 

 In Fig. 2. we plotted the velocity field ( , )u y t  given by Eq. 

(21), versus y for ={0.3,0.5,2.2}t  and versus t for 

={0,0.5,0.8}y . For a given value of t, the velocity is an 

increasing function with respect to y. It is clear that for a 

given value of y, the velocity ( , )u y t  decreases as function 

of t and tends to the ``stationary velocity'' = 1su y   for 

increasing t. The influence of the parameter   on the fluid 

motion is also shown in Figs. 2 (a) and (b). As expected, 

Figs. 2 show that velocity is a decreasing function with 

respect to   in absolute value, One can also see from these 
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figures that second grade fluid is slower than Newtonian 

fluid, in absolute value. It is observed that non-Newtonian 

effects vanish in time, after some time both fluids show 

same behavior. 

 Finally, we determine the volume flux  

 
1

0

2

3 2
=0

( ) = ( , )

1 ( 1)
= ( ) 2 exp .

2 1

k

k

k k k

Q t u y t dy

t
H t



 

   
    

   




 (24) 

corresponding to second grade fluid, respectively and 

volume flux  

 

 2

3
=0

1 ( 1)
( ) = ( ) 2 exp .

2

k

N k

k k

Q t H t t


 
   
 

  (25) 

 corresponding to constant stress on the lower plate obtained 

by Nazish et al. [29 (Eq.(24))] for Newtonian fluids.  

 

5 SINUSOIDAL TENSION ON THE BOTTOM PLATE 

Let us now consider ( ) = sin( )f t t , > 0  being the 

frequency of oscillations of the tension on the lower plate. 

Using Eq. (8) we obtain, after dropping the ` ̀ " notation,  
2

( ) = sin( ) , = ,
h

g t t



   (26) 

 Using Eqs. (15), (18) and the convolution theorem we 

obtain the exact (y,t)-domain solution of the set of equations 

(10)-(12) given by  

1 1
0

( , ) = ( )( ) = ( ) ( , ) ,
t

u y t g g t g t s g y s ds   (27) 

we obtain the velocity field  

 

 

 

 

 

 

 

1
0

2

2 20
=0

2

2
4 2 2

=0

2

2
4 2 2

=0

2

2
4 2 2

=0

( , ) = sin ( , )

cos( )
= 2 sin exp

1 1

cos( )
= 2sin( )

1

cos( ) 1
2 cos( )

1

cos( ) 1
2 ex

1

t

t
k k

k k k

k k

k
k k

k k

k
k k

k k

k
k k

u y t t s g y s ds

y t
t s ds

y
t

y
t

y

 

 

 

 

 

 

 

 









 

 
    

  

 
 


  

 


 

 



 






2

2
p

1

k

k

t



 
 

 

 (28) 

 The temporal limits of the velocity ( , )u y t  given by Eq. 

(28) are  

 

 

 

 

0

2

2
4 2 2

=0

2

2
4 2 2

=0

( , ) = 0,lim

cos( )
( , ) = ( , ) = 2sin( )lim

1

cos( ) 1
2 cos( )

1

t

k k
p

t k
k k

k k

k
k k

u y t

y
u y t u y t t

y
t

 

 

 

 









 
 


  

 





 (29) 

For large values of the time t, the velocity ( , )u y t  given by 

Eq. (28) reduces to the ``permanent solution" 
2(29) . 

The corresponding solution for Newtonian fluids are  In 

addition let us give another form if the permanent velocity 

given by Eq. (29). For this we rewrite the Eq. (15) in the 

form  

 12 2
( , ) = ( , ).u y q G y q

q




 

The poles of function ( , )u y q  are i  and kq  given by 

(17). Using the residue theorem, after lengthy but 

straightforward computations, the exact (y,t)-domain 

solution is  

 

  

   

1

12 2 2 2 2 2

1 2

2 2

1
( , ) = ( , ) =

1

( )cos( ) ( )sin( )
,

cos

u y t L G y q
q a b

A y t A y t

sh a b



  
 

    

  


  
 (30) 

where  

    
1

2

( ) = ( )( ) ( )( ),

( ) = ( )( ) ( )( ),

A y A y a b B y b a

A y B y a b A y b a

 

 

    

    
 (31) 

  

 

   

   

   

   

( ) = ( )cos( ) ( 1) sin ( 1)

( )sin( ) ( 1) cos ( 1) ,

( ) = ( )cos( ) ( 1) cos ( 1)

( )sin( ) ( 1) sin ( 1) ,

A y ch a b ch a y b y

sh a b sh a y b y

B y ch a b sh a y b y

sh a b ch a y b y

 

  

 

  

 (32) 

 and  

2 2 1
, = .

1 2
a b

 



     
      
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Figure 3: Profile of the velocity field   versus   (Fig.3a) 

and versus   (Fig.3b) corresponding to the Eq. (28) for 

sinusoidal tension on the wall  

   

Integrating the Equation (26) with respect to [0,1]y , we 

obtain the volume flux  

 

 

 

 

 

 

2

2 2
4 2 2 4 2 2

=0 =0

2 2

2 24 2 2
=0

( 1) 1( 1)
( ) = = 2sin( ) 2 cos( )

1 [ 1 ]

( 1) 1
2 exp

1[ 1 ]

kk
kk

k k
k k k k k

k

k k

k kk k k

Q t t t

t



    

 

  

 



 
    

   

   
   

   

 



 (33) 

 

which, for large values of time t, reduces to the ''permanent 

flux''  

 

 

 

 

2
4 2 2

=0

2

2
4 2 2

=0

( 1)
( ) = 2sin( )

1

( 1) 1
2 cos( )

[ 1 ]

k

k

k
k k

k

k

k
k k k

Q t t

t



 



  






 

 

 
  

 





 (34) 

 

Some properties of the flow are revealed in Fig. 3. This 

figure contains diagrams of velocity, ( , )u y t  given by Eq. 

(28) versus y and {0.3,0.8,2.2,}t  respectively, the 

diagrams of velocity ( , )u y t  versus t for 

{0.0,0.5,0.8}y . The influence of the parameter   on 

the fluid motion is also shown in Figs. 3 (a) and (b). As 

expected, Figs. 3 show that velocity is an increasing 

function with respect to   in absolute value. From these 

figures, it is evident that, second grade fluid is slower than 

Newtonian fluid, in absolute value. It is observed that for 

sinusoidal motion the non-Newtonian effects also vanish in 

time like constant shear stress case disused in Fig. 2. 

6 CONCLUSIONS 
 Couette flows of second grade fluids have been analyzed in 

the assumption that the lower plate, situated in the plane 

= 0y , applies a tangential stress to the fluid. Two 

particular cases, corresponding to constant and sinusoidal 

shear stresses on the wall, were considered. Exact 

expressions for the velocity ( , )u y t  have been determined 

by means of the Laplace transform. Some properties of the 

velocity ( , )u y t  were presented. In the case of a constant 

tangential tension on the bottom plate, the velocity ( , )u y t  

is an increasing function on y. For large values of the time t 

the velocity tends to the   stationary velocity" = 1Su y   

and non-Newtonian effects vanish in time (See Fig. 2). 

 If the plate applies a sinusoidal shear stress on the 

fluid, the velocity ( , )u y t  is written as a sum between the 

``permanent solution" ( , )pu y t  and the transient solution 

( , ) = ( , ) ( , )t pu y t u y t u y t . For large values of the time 

t, the transient velocity can be neglected and the fluid flows 

according to the ``permanent solution" ( , )pu y t . In both 

cases the volume flux was determined. we extracted the 

expressions for the velocity field corresponding to the 

motion of a Newtonian fluid as limiting cases of general 

solutions. Moreover, we compared second grade and 

Newtonian fluid graphically and observed that Newtonian 

fluid is faster than second grade fluid for both cases 
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